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Abstract

In classical mechanics, Maupertuis’s principle is used to determine
the trajectories of a set of particle, it is a simplified form of the prin-
ciple of least action [1,2]. Instead of solving the standard equations
of motion, Maupertuis’s principle enables the determination of an ob-
ject’s actual path by optimizing its mechanical energy, with the con-
dition that the area outlined by the object’s trajectory in the phase-
space diagram remains constant. This principle offers a unique per-
spective on the origin of the well-known variational principle in quan-
tum mechanics [3,4], when, instead of directly solving Schrödinger
equation, the system’s energy is minimized. In this work, we apply
Maupertuis’s principle to the two simplest systems in classical me-
chanics: motion under a constant force and simple harmonic motion.
We then establish the correspondence between Maupertuis’s principle
and the variational principle in quantum mechanics. By highlighting
the similarity between these two principles, our work demonstrates
a non-trivial internal connection between the quantum and classical
realms.

1 Introduction

In his attempt to understand the behavior of macroscopic objects, Sir Isaac
Newton developed a set of equations and principles that are known as New-
ton’s laws of motion [1,5]. For example, according to the second Newton’s
law, assuming that the motion is described in an inertial frame of reference,
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a particle moving in a force field acquires the following acceleration

a =
F

m
, (1)

where m is the particle’s mass and F is the net external force acting on the
particle.

While Newton’s laws of motion have been successfully implemented on the
macroscopic scale, the subatomic realm requires a significantly different and
more complicated approach, one that is based on the Schrödinger equation
and principles of quantum mechanics [3,4]. Stationary Schrödinger equation
in 1-D can be written as

Eψ = − h̄2

2m

∂2ψ

∂x2
+ U(x)ψ, (2)

here ψ(x) is the wavefunction, U(x) is the potential energy and E is the total
mechanical energy of the system, and h̄ is the reduced Planck constant.

Looking at Eqs.(1,2) it may not be obvious, however quantum mechanics
is closely related to and takes its origin from classical mechanics. An example
of this relationship is found in the quasi-classical approximation, where, in
the limit of large quantum numbers, solution of the Schrödinger equation (2)
converges towards the classical trajectories given by Eq.(1). This approxi-
mation not only demonstrates how classical mechanics can be viewed as a
special case within the broader quantum framework but also highlights the
seamless transition from the classical to the quantum world.

Another example of such a relationship is Maupertuis’s principle in clas-
sical mechanics and the variational principle in quantum mechanics. In both
approaches, to find the actual trajectory, the average energy of the system is
minimized under certain very specific conditions:

E(“actual trajectory”) = Emin (3)

Let us restrict our consideration only to bound states when the motion
is finite and repeats. In this case, in the classical approach, the condition is
that the area in the phase-space diagram outlined by the object’s trajectory
should remain constant

W =

∮
pdx = const, (4)
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where p = mv is the momentum and x is the position of the particle. The
restriction that the motion repeats itself helps to define integration (4) and
simplify the problem.

In the quantum approach, the minimization occurs for fixed quantum
numbers n, and, according to the Bohr-Sommerfeld quantization rule [6,7],
fixed quantum numbers correspond to fixed areas in the same phase-space
diagram

W =

∮
pdx = 2πh̄n, (5)

where h̄ is the reduced Planck constant and n is the quantum number.
Thus, both principles correspond perfectly to each other. While the vari-

ational principle is well-known and widely used for real calculations in quan-
tum mechanics, Maupertuis’s principle is less practical and has mostly the-
oretical interest.

More specifically, in this work, we aim to understand how Maupertuis’s
principle works and apply it to two simple classical systems such as motion
of a particle in a constant force fields and simple harmonic motion. We
will also demonstrate the correspondence of Maupertuis’s principle to the
variational principle in quantum mechanics, which can serve as a testament
to the underlying unity of the physical laws governing the universe, bridging
the gap between the microscopic and macroscopic domains.

2 Maupertuis’s principle

Pierre Louis Maupertuis introduced his principle aiming to describe the tra-
jectory an object or particle follows by optimizing the particle’s average me-
chanical energy.

To apply Maupertuis’s Principle, first, we need to describe the trajectory
of our system using the so-called phase-space diagram: for one degree of
freedom, it is a two-dimensional plane with momentum or velocity as the y-
axis and position as the x-axis. Thus, each point on the phase-space diagram
corresponds to a certain position and velocity of the particle and completely
describes the state of the system.

Furthermore, for a given trajectory, we can determine the system’s aver-
age mechanical energy, which is the sum of its kinetic and potential energies,
and calculate the area in the phase-space diagram outlined by the trajec-
tory (assuming that motion repeats itself and the system comes to its initial
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position after some time T ).
Finally, by varying the trajectory, we can obtain different values for the

energy and area. Maupertuis’s Principle states that the actual trajectory
delivers a minimum to the energy under the condition that the area in the
phase-space diagram remains constant. Thus, by minimizing the average
energy, we can determine the actual trajectory of the system. The following
are two examples of the application of this principle.

2.1 Constant Force Example

Let’s consider a periodic motion of an object under action of a constant force
and a rigid floor: at t = 0 the object is at the ground, x = 0, and has positive
initial velocity v0 pointing up; then the object travels up and slows down until
it comes to a complete stop at x = L (let’s take that the force points down
and does not allow the object to fly away); then the object starts moving
down towards the ground, and, after an elastic collision with the ground, the
motion repeats starting with the same initial velocity v0, see Fig. 1.

The described motion can be parameterized as a function of time t as{
x = v0t− at2

2
, position as a function of time

v = v0 − at, velocity as a function of time
, (6)

where v0 is the object’s velocity at the ground, and a is the acceleration. Here
we assumed constant acceleration motion and treat the acceleration and the
initial velocity as free parameters. Note: we do not know the value of the
acceleration since we do not assume any Newton’s laws.

Calculating the area under the trajectory. Considering the one-
dimensional motion (6) we can eliminate time and find velocity as a function
of position

v = ±
√
v20 − 2ax, (7)

where the signs corresponds to: ‘+’ is for motion up and ‘-’ for motion down.
Analyzing the motion of the particle and limiting the position x between

the ground (x = 0) and the maximum position (x = L), we can compute the
area on the phase-space diagram (see Figure 1, the shaded part) as follows:

W = 2

∫ L

0

v dx = 2

∫ L

0

√
v20 − 2ax dx =

2v30
3a

, (8)
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Figure 1: Phase-space diagram for motion under constant force.

where the mass multiplier was omitted (m=constant), the factor 2 is due
to areas above and below the x-axis, and the maximum position L is the
position where the particle momentarily stops:√

v20 − 2aL = 0 → L =
v20
2a
. (9)

Using the maximum position (9) eliminates the contribution from the upper
limit in integration (8).

Calculating average mechanical energy. Mechanical energy is the
sum of a system’s kinetic and potential energies: E = KE + U . Let us first
consider kinetic energy

KE =
1

2
mv2, (10)

here m represents mass, and v represents speed. Due to the conservation of
mechanical energy, the ball will always bounce to the same height. When
graphed in the phase space diagram, the cyclic behavior of the ball becomes
evident. Consequently, when the ball returns to its original position, we can
consider one period completed T . With this in mind, we can describe the
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ball’s average kinetic energy as an integration of the time evaluated from
time zero to time T divided by this time T . Using v = v0 − at from Eq.(6),
we can write

⟨KE⟩ = m

2T

∫ T

0

(v0 − at)2dt =
m

2T

(
v20T − v0aT

2 +
1

3
a2T 3

)
. (11)

After substituting T = v0/a and simplifying the integral, the resultant aver-
age kinetic energy for the particle’s motion becomes

⟨KE⟩ = mv20
6
. (12)

Halfway through the computation of mechanical energy, the only missing
constituent is the potential energy that for a constant force can be written
as

U = −Fx, (13)

where F is the force, the position x as a function of time is defined by Eq.(6),
thus, the average position can be found as follows,

⟨x⟩ = 1

T

∫ T

0

xdt =
1

T

∫ T

0

(
v0t−

at2

2

)
dt =

1

T

(
v0T

2

2
− aT 3

6

)
. (14)

After further simplification involving T = v0/a, the average position is:

⟨x⟩ = v20
2a

− v20
6a

=
v20
3a
. (15)

Using the result of integration (15) and the definition (13) the average
potential energy equals to

⟨U⟩ = −F v
2
0

3a
= |F | v

2
0

3a
. (16)

In this case, the force F is negative (we need a returning force bringing
the object back to the ground), so it is convenient to represent the force as
F = −|F |. Now that we have kinetic ⟨KE⟩ and potential ⟨U⟩ energies, we
can set up the equation for the average mechanical energy

⟨E⟩ = mv20
6

+ |F | v
2
0

3a
. (17)
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Figure 2: Variations in parameters v0 and a while maintaining the area W
constant

Optimization of energy. Now that the first two steps of Maupertuis’
principle have been established, we can vary the trajectory maintaining the
area constant (see Fig. 2) and trying to minimize the energy (17).

We can use the area equation (8) to isolate acceleration and replace it in
the mechanical energy equation.

W =
2v30
3a

→ a =
2v30
3W

. (18)

⟨E⟩ = mv20
6

+ |F | v
2
0

3a
=
mv20
6

+
|F |W
2v0

. (19)

Finally, by using the average mechanical energy equation and optimizing it,
we can determine the minima extremum, which will correspond to the lowest
energy state for the system while maintaining a constant area.

The first derivation from the energy over the initial velocity gives us

d⟨E⟩
dv0

=
mv0
3

− |F |W
2v20

= 0 (20)
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and

v30 =
3|F |W
2m

and a =
2v30
3W

, (21)

or

a =
F

m
. (22)

We did not assume any value for the acceleration a, formula (22) came out
as a result of the minimization. Thus, optimizing mechanical energy while
maintaining the area constant results in Newton’s second law of motion.
This means the actual trajectory the object undergoes is when the object’s
acceleration equals to the force over the mass. This was derived from the
Mauperuis’ principle.

2.2 Simple Harmonic Motion Example

Let’s consider an ideal harmonic oscillator, where a spring is fixed on one
side and on the other side is attached to an object with mass m. The spring
is later compressed and released, so the mass undergoes SHM, which can be
parameterized as{

x = A cos(ωt), position as a function of time
v = −ωA sin(ωt), velocity as a function of time

, (23)

where A represents the amplitude, ω is the angular frequency of the oscilla-
tion, and v represents the velocity of the mass.

Computation of the area. Considering the motion of the mass in terms
of the velocity v and position x: the vertices in the x direction represent the
maximum elongation and contraction of the spring, which, in relationship to
the x-axis, as observed in Fig. 3, are points of velocity equating to zero. In
terms of the v-axis, when the displacement is zero, then the mass is at its
equilibrium, resulting in the maximum speed.

Let’s note that Eq.(23) is a standard way of expressing an ellipse. It is
well known that the area inside an ellipse can be expressed as W = πab or,
taking in our case a = A and b = ωA, we get

W = πωA2. (24)

Computation of average mechanical energy. In the case of SHM,
the potential energy can be obtained from Hooke’s Law: F = −kx and
U = 1

2
kx2 and the kinetic energy is the same as before.
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Figure 3: Phase-space diagram for Simple Harmonic Motion.

Consequently, due to the dependence on x and v concerning time, see
Eq.(23), we can integrate them and yield the average kinetic and potential
energies

⟨KE⟩ = 1

T

∫ T

0

1

2
mv2dt =

mω2A2

4
, (25)

⟨U⟩ = 1

T

∫ T

0

1

2
kx2dt =

kA2

4
. (26)

Now, the average mechanical energy for the simple harmonic motion can
be expressed as

⟨E⟩ = mω2A2

4
+
kA2

4
. (27)

Optimization of energy. We can treat the amplitude A and the fre-
quency ω as free parameters and optimize the average energy (27) under the
condition that the area (24) remains constant, see also Fig. 4.

By rearranging the area formula for amplitude, we can replace A2 with
W/πω to simplify the average mechanical energy.

W = πA2ω → A2 =
W

πω
. (28)
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Figure 4: Variations in parameters ω and A while maintaining W constant.

⟨E⟩ =
mω2 W

πω

4
+
kW
πω

4
=
mωW

4π
+
kW

4πω
. (29)

Consequently, by optimizing the average mechanical energy, we can achieve
the result. The first derivation:

d⟨E⟩
dω

=
mW

4π
− kW

4πω2
= 0. (30)

Solving this equation for the frequency ω, we get

ω2 =
k

m
. (31)

This means the actual periodic path the object takes under simple harmonic
motion can be achieved under the condition that the square of angular fre-
quency ω2 corresponds to the spring constant over mass k/m. The result
obtained from Maupertuis’ principle corresponds to the standard result ob-
tained through simple harmonic motion standard equations.

3 Variational Principle

The variational principle employed in quantum mechanics contrasts with
Maupertuis’s principle, which finds application in classical mechanics. How-
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ever, the steps in their execution allow them to maintain an analogous rela-
tionship. Its execution can be broken down into the following steps:

1st Guess the behavior of the particle: it involves using adjustable param-
eters to develop a trial wave function that describes the system’s quantum
state. For example, a trial wavefunction may depend on regular space posi-
tion x and on a free parameter a

ψ = ψ(x, a). (32)

Of course, for different systems the trial wavefunctions and parameters are
different. Picking the form of the trial wavefunction is equivalent to picking
the motion in Eqs.(6,23).

2nd Calculating the energy of the system: it requires calculating expec-
tation values from the operators of kinetic and potential energies using the
trial wavefunction from the first step:

E(a) = ⟨ψ|Ĥ|ψ⟩, (33)

where Ĥ = K̂E + Û is the Hamiltonian that represent the energy of the
system. This step is equivalent to classical calculations of average mechanical
energy (19,29).

3rd Optimization: usually numerical methods are used to optimize the
parameters until the energy from step 2 value is minimized. If no other
conditions are applied, the result approximates the ground state wavefunction
and the ground state energy of the system (n = 1)

dE

da
= 0. (34)

In summary, see Table 1, Maupertuis’ and the variational principles share
similarities in estimating motion, energy minimization, and optimization.
They differ in the nature of the parameters and the outcomes of this process.
Nevertheless, if analyzed based on their computational approach, they can
be regarded as counterparts of different physical systems.

4 Conclusion

The paper aimed to expose Maupertuis’ principle as an alternative approach
to describe classical systems yielding standard equations and building a
bridge with the variational principle implemented in quantum mechanics.

11



Table 1: Comparison of Maupertuis principle and variational principle.
Similarities Differences

Both require parametrization
of the motion with a set of pa-
rameters.

The parameters for the variational prin-
ciple rely on the Hamiltonian and wave-
function, while the Maupertuis’ principle
involves the phase-space diagram.

After the motion is defined,
the energy can be minimized
according to the parameters to
be further optimized.

The optimization of energy with respect
to the parameters results in the ground
state of the wave function for the varia-
tional principle (state with certain quan-
tum number), while for Maupertuis’ prin-
ciple minimization occurred for the fixed
phase-space area.

In conclusion, through the two cases explored, Maupertuis’ principle re-
sulted in Newton’s second law of motion, a = F/m, for scenarios with
constant acceleration motion and for standard angular frequency equation,
ω2 = k/m, for the case resembling simple harmonic motion. The deriva-
tion of these well-known equations from an alternative approach, such as
Maupertuis’ principle, attests to its precision in describing dynamical sys-
tems. Moreover, when contrasted with the variational principle, they share
similarities in their computational approaches; both require an estimation of
motion under a set of parameters, and both involve minimization and opti-
mization to complete their calculations. Despite these parallels, they diverge
in the nature of their parameters and in their outcomes. While Maupertuis’
principle yields a constant that aids in determining the actual path within
a dynamical system, the variational principle is tailored for describing the
wavefunctions of quantum states.
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