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Abstract

We studied Lagrange points and tried to locate them in any given
binary star system. The obtained equations were applied to both a Sun
- Earth - Moon scenario as well as a binary star system. Using Python
we mapped the potential energy of various binary systems with different
mass ratios and identified their respective Lagrange points. Today the
Lagrange points of our Earth-Sun system are of special interests as the
point furthest from the Sun, also known as L2, hosts NASA’s newest and
most powerful James Webb Telescope.

1 Introduction

The planets in our solar system revolve around a single star, the Sun. The
universe, however, is filled with stars that are orbiting other stars. We refer to
these as binary star systems [1].

The technological advances made over the last century have enabled us to
send rovers, telescopes and spaceships to places unimaginable before. Predict-
ing the motions of all these objects in space requires a good understanding of
complicated environments where multiple gravitational forces act.

In a two-body system, Kepler’s 3rd Law is sufficient to predict the motion
of both objects. When a third body is introduced, the motion becomes more
complicated since the objects are constantly pulled and pushed by multiple
forces. In this project we analyze and describe motion in this intricate three-
body problem.

To analyze a three-body system we present it as a binary system (for ex-
ample, two stars orbiting the common center of mass or a star-planet system)
and a third celestial body (for example, a planet or a moon). If we assume
a third body of negligible mass, we can imagine that it will be of little to no
consequence on the binary system’s motion. Such examples exist and we can
look at an Earth - Sun - satellite scenario.

Another simplification can be achieved by choosing a non-inertial frame of
reference that is rotating together with the binary system. In this rotating frame
the binary system will be stationary, so the third body will experience the grav-
itational forces from two stationary masses. Having a stationary binary system
is very convenient, but the non-inertiality of the reference frame introduces an
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additional fictitious force that will contribute to the net force on the third body
and to the potential energy of the entire system.

Using Python to create contour maps of the potential energy of our three-
body system, we are able to locate its Lagrange Points often referred to as the
“parking spots of space”. Those points, named after the mathematician of the
same name, are interesting positions in space; any object placed at those points
will experience the same orbital period as that of the binary-system.

It is possible to identify five Lagrange points in a given system of which two
should be stable and three are unstable. Spacecraft and satellites positioned
there need very little to no fuel to maintain their position. Today there are
probes present at some of the Lagrange points of our Earth-Sun system and the
point furthest from the Sun, also known as L2, is the home of NASA’s newest and
most powerful James Webb Telescope that was launched from French Guyana
in December of 2021.

2 Theory

We will start by considering a two-body problem which corresponds to the
motion of two stars about a common center of mass or motion of a planet in
the gravitational field of a star.

According to the universal law of gravity, the gravitational force between
two point-like masses is given by the following equation

~F = −Gm1m2

r2
~n, (1)

where m1 and m2 are the interacting masses, r is the distance between the
masses, ~n is the unit vector defining the direction of the force, and G = 6.67×
10−11Nm2/kg2 is the universal gravitational constant.

It is also useful to define the potential energy of interaction of two point-like
masses:

U(r) = −
∫

~F (r) · ~dr = −Gm1m2

r
. (2)

These two equations are common knowledge and have been used to analyze
the two-body problem. If we introduce a third body, the motion of the binary
system will not be affected assuming that we are considering a third body of
negligible mass. This is often the case when looking at the relative mass of a
planet compared to two much heavier stars, or a moon relative to a planet and
a star. We can thus use the same equations.

Let us look at such system. We know that the two bodies, m1 and m2, will
orbit the center of mass with a certain orbital speed. If we begin rotating with
the system then m1 and m2 appear to become stationary. This “freezing” of
the frame allows us to analyze more conveniently the motion and relationship
between this binary system and the third body. This approach renders the
frame non-inertial.
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Traditionally, an inertial frame is required to apply Newton’s laws of motion
but for the sake of ease, we decide to use a rotating frame of reference. To pre-
serve the laws of motion in this non-inertial frame we must introduce fictitious
forces such as ~F → ~F + ~FNI . Such a fictitious force acting on the third body
can be written as

~FNI = mω2~r, (3)

where m is the mass of the third body, ω is the angular velocity of the binary
system, and ~r is the position of the third body relative to the center of the
binary system [2]. The corresponding potential energy that can provide this
fictitious force is given by

UNI = −
∫

~FNI(r) · ~dr = −1

2
mω2r2. (4)

Now let’s consider a three body system and write the equation for the cor-
responding Lagrange points. In the rotating frame, at any Lagrange point all
the forces acting on the third-body balance out each other, so the third body
is stationary relative to the binary system. The corresponding equation can be
written as

~F1 + ~F2 + ~FNI = 0, (5)

where ~F1 is the force between one component of the binary system and the
third body, ~F2 is the force between the second component of the binary system
and the third body, and ~FNI is the fictitious force on the third body due to
non-inertiality of the frame.

Another way to determine Lagrange points is to find local extrema of the
potential energy of the third body in the binary system field

δU(r) = 0, (6)

where U(r) = U1(r) + U2(r) + UNI(r) is the energy of interaction of the third
body with m1, m2, and the fictitious (so called centrifugal) potential energy.
Equations (5) and (6) are equivalent.

2.1 LPs for Sun-Earth system

In this section we apply the above equations to the Sun-Earth system and
analytically solve for the simplest Lagrange Points located near the Earth. We
consider the situation represented on Fig. 1.
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Figure 1: Graphical representation of the forces present in a three-body system.

Using universal law of gravity (1) and the non-inertial force (3) we can
rewrite Eq.(5) as

−Gm1m

r21
−Gm2m

r22
+mω2r3 = 0, (7)

where r1 is the distance from the Sun to the mass m, r2 is the distance from the
Earth to the mass m, r3 ≈ r1 is the distance from mass m to the center of the
Sun-Earth system, and ω it’s angular velocity of the Sun-Earth system. Here
we assumed that the Sun is much more massive than the Earth, m2 � m1.

Using Kepler’s third law we can find the angular velocity ω as

ω2 ≈ Gm1

a3
, (8)

where m1 is the solar mass and a is the average radius of Earth’s orbit, so called
Astronomical Unit or AU. Now we can rewrite the balance of forces (7) as

G
m1m

r21
+G

m2m

r22
= G

m1

a3
mr1. (9)

It is convenient to divide by Gm1m on both sides of Eq. (9) and introducing
the ratio

µ =
m2

m1
, (10)

we finally get
1

r21
+
µ

r22
=
r1
a3
. (11)

We can measure all the distances in AU so that a = 1 and

1

r21
+
µ

r22
= r1. (12)

To solve Eq.(12) we will substitute

r1 = 1 + δr and r2 = δr, (13)
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where δr � 1 is the deviation of r1 from 1 AU. Using the smallness of δr and
applying Taylor expansion [3],

1

(1 + δr)2
≈ 1− 2δr, (14)

we finally arrive at

1− 2δr +
µ

δr2
≈ 1 + δr. (15)

The method works best by choosing a point far enough into the series to
grant a good approximation and then “cutting of” the tail of the polynomial
chain there. Following this principle we obtain:

δr =
(µ

3

)1/3
. (16)

This allowed us to find the L2 point for our Earth - Sun system. For the
Sun-Earth system µ = 1/330000 and Eq.(16) gives δr = 0.01 AU.

We were then able to calculate for the other point L1 located on the other
side of the Earth also at 0.01 AU. To do so we simply had to subtract δr instead
of adding it an change the corresponding sign in Eq.(7) because of the different
direction of the force.

2.2 LPs for Arbitrary Binary Systems

Now let us consider an arbitrary three-body system. Instead of using forces to
look for the precise location of each Lagrange point, we use potential energy,
denoted as U , to visualize the extrema. Those extrema would represent our
Lagrange points. Using potential energy is much easier to deal with than forces
because it’s not a vector. Finding the potential energy extrema is equivalent to
what is done in Eq (5) where we set the forces equal to zero.
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Figure 2: Chart of binary star system showing center of mass, as used in map-
ping potential energies of different binary systems based on different masses, in
BSU.

Figure 2 can then be utilized to introduce the center of mass for any arbitrary
binary system with different distances from a mass of interest. With this we
can derive the parameters of this three-body system that we wish to use later.
If the coordinates of mass m are (x, y), then

r1 =
√
x2 + y2, r2 =

√
(x− a)2 + y2, r3 =

√
(x− l)2 + y2, (17)

and center of mass position l and the angular velocity ω are

l =
m2

m1 +m2
a, ω2 =

G(m1 +m2)

a3
, (18)

where a is the size of the binary system and the angular velocity ω is expressed in
terms of G, the total mass m1 +m2, and the size a. Using the above parameters
we can piece together an equation for potential energy of the system as follows:

U(x, y) = −Gm1m

r1
− Gm2m

r2
− mω2r23

2
, (19)

which corresponds to the following after substituting all the appropriate param-
eters:

U(x, y) = − Gm1m√
x2 + y2

− Gm2m√
(x− a)2 + y2

− G(m1 +m2)m

2a3
(
(x− l)2 + y2

)
.

(20)
To make the equation more manageable we try to simplify components of the
equation. It is convenient to divide Eq.(20) by G(m1 + m2)m and introduce
ratio of each mass to the total mass as

µ1 =
m1

m1 +m2
, µ2 =

m2

m1 +m2
, and µ1 + µ2 = 1, (21)
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and measure all the distances in the size of the binary system a

r1 →
r1
a
, r2 →

r2
a
, r3 →

r3
a
. (22)

Now the ’reduced’ potential energy u = U/G(m1 +m2)m looks like:

u(x, y) = −µ1

r1
− µ2

r2
− r3

2

2
, (23)

where r1 =
√
x2 + y2, r2 =

√
(x− 1)2 + y2, r3

2 = (x− l)2 + y2, and l = µ2.
Using the end result, Eq (23) allows us to change the parameters quite easily

in a program we wrote in Python to show the results for very different types
of binary systems. We were able to use the same equation for our Sun - Earth
- Moon system, and for binary system with different mass distribution ratios.
Potential energy diagrams were mapped for binary star systems of nearly equal
mass as well as systems with a ratio of 80 : 20.
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Figure 3: Top left: PE diagram depicting the five Lagrange Points in our Earth-
Sun-system. Top right: PE diagram for a system with a smaller difference in
masses between the two bodies. The mass difference here is 80 to 20. Bottom
left: PE diagram for a recently discovered binary system in the NGC 1850
cluster [4]. The binary system is composed of a main sequence turn-off star
and a black hole with a mass ratio of 5 to 11. Bottom right: PE diagram for a
system composed of three stars of equal mass.
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Figure 4: A closer look at a Lagrange point on a potential energy diagram. Here
a stable point is depicted, which corresponds to a minimum peak.

3 Conclusion

Though motion in three-body systems are complicated it is possible to analyze
them under certain assumptions. Computational tools can help us map the
potential energy of such systems and locate Lagrange points.

The resulting potential energy contour maps, Figures 3 and 4, show that a
binary system’s Lagrange points are affected by the mass distribution of the two
bodies m1 and m2, as predicted. Interestingly the L1 point, the point between
both masses, appears to be the same between most types of binary systems. The
stable Lagrange points, L4 and L5, appear to decrease in size as the disparity
between m1 and m2 becomes more significant. A system with a mass ratio of
about 80:20 shows these stable points to be larger, meaning there could be a
wide deviation in the movement of an object there before it leaves equilibrium.

While human space exploration has its limits, it is not unreasonable to imag-
ine sending satellites, telescopes and probes to occupy these points in space.

The authors would like to thank Dr. Roman Senkov for his help and guidance
in this research project. The research was done as a part of the Honors General
Physics I course at LaGuardia Community College.
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