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1 Foreword

Seeing a master at work is always mesmerizing, as if they are performing
magic in front of our very eyes. It doesn’t matter if we are looking at a
culinary chef, a musician, an athlete, or a mathematician. It can be a source
of great inspiration. Despite understanding that this magic that we see ac-
tually originates from knowledge and years of practice, we’re still inspired to
pursue their magic ourselves.

In this short article, we will try to demonstrate a few simple, but beautiful
mathematical “tricks” and methods, that will allows us to solve quite chal-
lenging problems with minimal effort (in this case the problems only appear
to be challenging - otherwise they would not have such simple solutions or
the hardest part of the solution is somehow hidden). At the end of the article
we show how these methods can be applied to some real and not-very-real
physics problems.

We hope you’ll enjoy the reading and the magic behind equations and formu-
lae. Please feel free to contact us with any questions and, perhaps, solutions.

Tao Chen (tchen@lagcc.cuny.edu) and
Roman Senkov (rsenkov@lagcc.cuny.edu)

2 Geometric and Other Series

A series is the sum of infinitely many terms. Usually, adding an infinite
amount of terms is a daunting task. Luckily, if these terms have a pattern
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or they can be derived from a previously derived series the problem becomes
manageable. For example, to find

S1(x) = 1 + x + x2 + x3 + · · · (1)

we can rearrange the sum as

S1(x) = 1 + x(1 + x + x2 + x3 + · · · ). (2)

We notice that the expression in the brackets is equal to S1(x), so we can
rewrite the previous equation as

S1(x) = 1 + x · S1(x) (3)

and therefore

S1(x) = 1 + x + x2 + x3 + · · · = 1

1− x
. (4)

It has to be mentioned that these manipulations require certain conditions
such as convergence to be true, that is, the sum of infinitely many terms to be
valid (which has to be proven!). Without convergence, the above derivation
is not valid. To see the problem try to find S1(x) for x = 1 or x = 2 (actually
the sum in Eq (1) exists only for |x| < 1).

The series in Eq.(1) is called a geometric series, but it also helps to find
the sum of other series. For example, let

S2(x) = x +
x2

2
+

x3

3
+

x4

4
+ · · · . (5)

Note that
dS2(x)

dx
= 1 + x + x2 + x3 + · · · = S1(x) (6)

is a differential equation, S ′2(x) = S1(x). Therefore we can integrate it as

S2(x) =

∫
1

1− x
dx = − ln(1− x). (7)

Using Eq.(7) we can demonstrate that the following series diverges logarith-
mically

1 +
1

2
+

1

3
+

1

4
+ · · · = lim

x→1
[− ln(1− x)] =∞. (8)
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A similar technique could be applied to find the following famous series

S3(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · . (9)

We leave it to the readers: find S3(x) and prove that

e = 1 + 1 +
1

2!
+

1

3!
+ · · · , (10)

where e ≈ 2.7182818 . . . is the Euler’s number.

3 Continued Fractions

Continued fractions are written as fractions within fractions, which are added
up in a special way, and which may go on for ever. In fact any fraction can
be written as a continued fraction with finite length, such as 11/30 which
can be written as

1

2 +
2

2 +
2

2 +
2

3

;

while an irrational number can be written as a continued fraction with infinite
length. Similar to a series, continued fractions can be found if there is some
pattern. For example, let

F1 = 1 +
1

1 +
1

1 +
1

1 +
1

1 + . . .

. (11)

It is easy to see that

F1 = 1 +
1

F1

,

or F1 satisfies the equation x2−x−1 = 0. Thus F1 =
√
5+1
2

. What happened
to the second root of the quadratic equation?
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Can you find a more general continued fraction yourself?

F2(x) = x +
1

x +
1

x +
1

x +
1

x + . . .

. (12)

We can also find more complicated continued fractions, for example, like
this one

F3 = 1 +
1

2 +
1

1 +
1

2 +
1

1 + . . .

. (13)

Show that F3 satisfies the following equation

F3 = 1 +
1

2 +
1

F3

(14)

and find F3. We leave the solution to diligent readers.

4 Nested Roots

A nested root is a radical expression that contains other radical expressions
(nests). Similar to the series and continued fractions, we can also find the
precise value of a nested root if it has a certain pattern. For example, let

R1 =

√
2 +

√
2 +
√

2 + · · · (15)

It is easy to see that R1 =
√

2 + R1. That is, R1 satisfies the equation
x2− x− 2 = 0. Thus R2 = 2. Again, what will happen to the second root of
the quadratic equation?

The readers can try to find the following three nested roots:

R2(x) =

√
x +

√
x +
√
x + · · ·, x ≥ 0 (16)
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R3 =

√
2−

√
2−
√

2− · · ·, (17)

and

R4 =
3

√
6 +

3

√
6 + 3
√

6 + · · ·. (18)

5 Physics Examples

In this section we consider two physics-related problems. In the first example
we calculate the effective resistance of an infinite series of resistors forming
an electric circuit. The setup is slightly artificial, but still quite useful to
consider, at least from theoretical point of view. The second example is a
real-life problem from Quantum Field Theory (QFT). We discuss the idea
behind the Schwinger-Dyson equations (SDEs) that involve summation of an
infinite number of Feynman diagrams. Quantum field theory in general and
SDEs in particular are quite complicated, so we will significantly simplify the
problem considering it at a qualitative level.

5.1 Infinite Series of Resistors

Consider the electric circuit shown in Fig. 1. One way to find the current
through the battery V is to replace the right-side part of the circuit with an
equivalent resistance, Req.

Figure 1: Electric circuit with infinite number of identical resistors.

Equivalent resistance is an interesting and useful concept that is com-
monly used in electrical circuit theory. Figure 2 helps us to visualize the
equivalent resistance for the given circuit.
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Figure 2: The equivalent resistance.

Looking at Fig. 2 we notice that all of the resistors to the right from the
two most left resistors (one is horizontal and one is vertical) form the same
equivalent resistance Req. It is only true due to the fact that we have infinite
number of resistors connected in the circuit. There is a certain similarity
between this diagram and Eq.(2) that we had for the Geometric series. Thus
we can proceed with the similar approach and set an equation for Req similar
to Eq.(3). Figure 3 presents this equation graphically

Figure 3: The graphical representation of the equation (19) for the equivalent
resistance.

while the analytical form of this equation is the following

Req = R +
RReq

R + Req

. (19)

Here we used certain well known rules for how to “add” resistances that are
connected in parallel and series [1]. The solution of the above equation gives
us

R2
eq −R2 −RReq = 0 or Req =

1 +
√

5

2
R. (20)
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If you liked and understood the idea, then try to find the equivalent ca-
pacitance for a similar circuit but with an infinite series of capacitors, see
Fig. 4. Note that capacitors obey slightly different rules when connected in
parallel/series - exactly opposite the behavior of resistors [2].

Figure 4: A series of identical capacitors.

5.2 The Idea behind Schwinger-Dyson Equations

In quantum theory we use wave function to describe the probability of finding
the particle near certain position or Green’s function G(x, y) which has a
similar meaning as the wave function but with the additional condition that
initially the particle was at position y.

The Dyson equation for the single-electron Green’s function represented
as an infinite series of Feynman diagrams as shown in Fig. 5. As we can see,
there are infinite number of possibilities for the electron to reach point x start-
ing from point y, including free motion (the “bare electron” Green’s function
G0(x, y)) and motion influenced by electromagnetic interaction (“dressed”
with various photon exchanges).
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Figure 5: The single-electron Green’s function G and the self-energy operator
Σ.

The Dyson equation for the electron Green’s function can be schemati-
cally written as following (compare it to Fig. 5)

G = G0 + G0 · Σ ·G0 + G0 · Σ ·G0 · Σ ·G0 + · · · (21)

It should be noted that in the Dyson equation every “multiplication” oper-
ation is an integration, for example, the second term in Eq.(21) should be
understood as

G0 · Σ ·G0 =

∫∫
G0(xf , x)Σ(x, y)G0(y, xi)d

4xd4y. (22)

Similar to Eq. (3) we can rewrite the equation for the electron Green’s
function as

G = G0 + G0 · Σ ·G (23)

or in the integral form

G(xf , xi) = G0(xf , xi) +

∫∫
G0(xf , x)Σ(x, y)G(y, xi)d

4xd4y. (24)

Finally, we write a formal solution of Eqs.(23) and (24) in the form similar
to the Geometric series solution (4). Using operator notations (where I is a
unit operator and G0Σ is an integral operator) we get

(I −G0Σ)G = G0 (25)
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and introducing inverse operators the electron Green’s function can be finally
written as

G = (I −G0Σ)−1G0 =
1

I −G0Σ
G0, (26)

where (I−G0Σ)−1 is the inverse operator for (I−G0Σ). Is not it remarkable
how a simple geometric series can manifest itself in quantum field theory
equations?

As the last “hw” problem, could you try to proof the following identity?
Note that working with operators is similar to working with matrices where
the order of matrices is important (A ·B 6= B · A).

G =
1

I −G0Σ
G0 =

1

G−10 − Σ
, (27)

here G−10 is the inverse operator for the bare electron Green’s function G0

and Σ is the self-energy operator (see, Fig. 5).
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